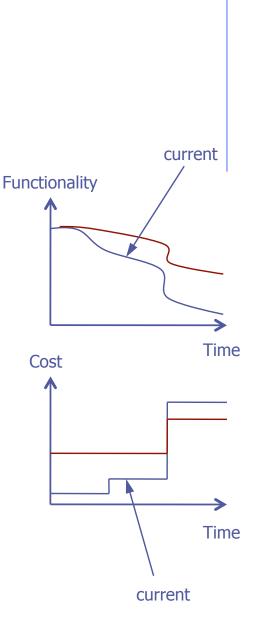
Bridge PBEE Overview & Pilot Next Generation Bridge Studies

Kevin Mackie – Central Florida BozidarStojadinovic – UC Berkeley AdyAviram – UC Berkeley

PEER Annual Meeting San Francisco, CA 2009/10/15

Next Generation Bridges

- Sridges of the future" -- FHWA
 - Longer service life (100 years)
 - Accelerated construction
 - Easily widened or adapted
 - Reduced life-cycle costs
 - Reduced vulnerability to extreme hazards
 - Constructability and maintenance important in design considerations
- From Caltrans perspective
 - Equal or less vulnerable than current design
 - Inclusive of large portion of bridge inventory



Next Generation Bridge Workshop

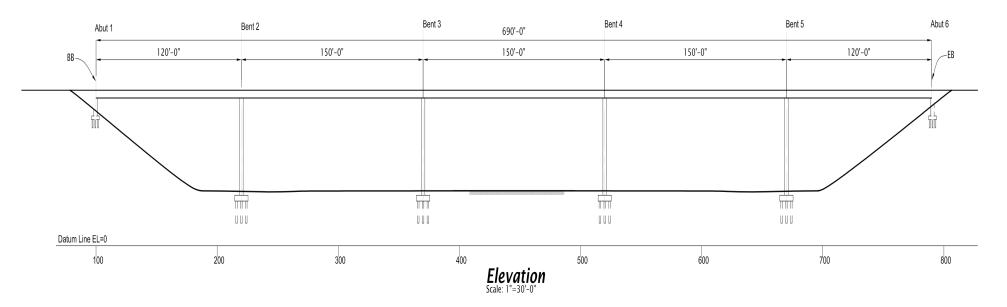
- Held Aug. 24 with PEER researchers
- Review of major topics:
 - 1) Performance goals and objectives for next generation of bridges
 - Characteristics of next generation systems (materials, technologies, etc.)
 - 3) Rumination on next generation testbed(s)

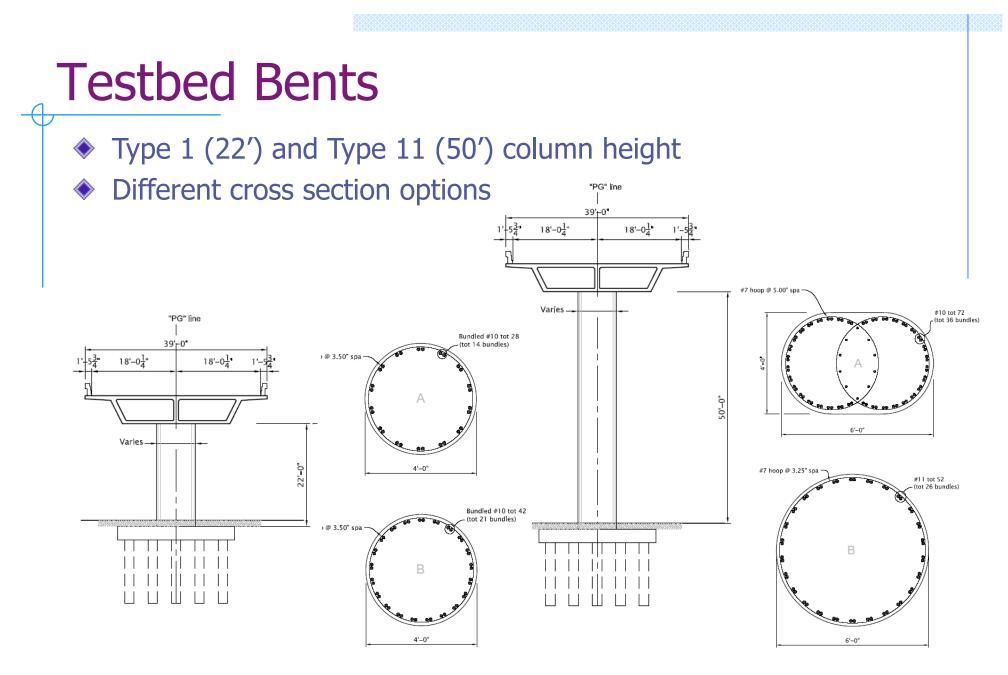
1: Performance objectives

- Current approach: monolithic, CIP, RC or PT bridges
 - Damage assessed in terms of deformations
 - Construction and repair constrained by existing approaches
- Need new measures of resilience
 - Functionality
 - Direct (repair) and indirect cost (down time)
 - Carbon footprint, design speed, etc.
- Measuring new system with old PO
 -> only incremental gains

2: NextGen bridge systems

- Focus on common design cases
 - System approach to design (structural + geotechnical)
 - Foundation performance tied to structural performance objectives
 - Ground improvement to attain foundation performance
- Techniques and systems
 - Modular, precast
 - Rocking
 - Base isolation
 - Rocking + modular
 - FRC, ECC, composites, & other materials

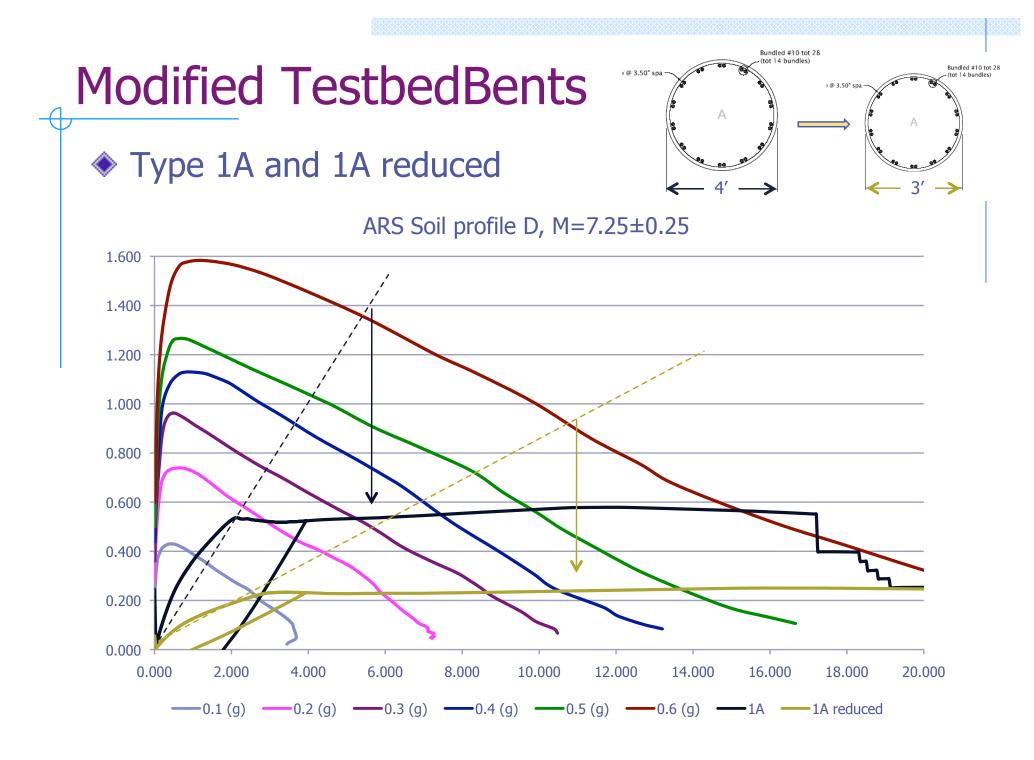



3: NextGentestbed(s)

- Boza's blank box
 - No specified technology or design
- Southern CA permutations
 - Canyon multi-column bent PT
- New modular or base isolated design
- Modification to existing Ketchum testbed
 - Increase column R factor
 - Add in-span hinge and/or longer span(s)
 - Differential column heights
 - Addition of precast components or BI

Previous Overpass Testbed

- Bridge characteristics (ala Ketchum)
 - CIP, post-tensioned box girder (Caltrans like)
 - Deck 39 ft wide, 6 ft deep
 - Single column bents
 - Span lengths 120-150x3-120 ft


Pilot Studies on Bridge Systems

- Conventionally reinforced concrete (RC) bridge
 - RC1: Based on Type 1A (Ketchum *et al.* 2004)
 - RC2: Column redesign of RC1
- Fiber-reinforced concrete (FRC) bridge
 - Fiber-reinforced bridge pier to replace Type 1A
 - Special reinforcement details in the plastic hinge zone
 - Relaxed transverse reinforcement

Seismically isolated (BI) bridge

- Lead rubber bearings beneath superstructure
- BI1: isolators designed -> elastic column behavior
- BI2: isolators stiffer -> potential inelastic column behavior
- Modular columns and bent frames
 - Dry joints, pre-cast column segments
 - Post-tensioned

Fiber Reinforced Piers

- Fiber-reinforced bridge pier with 1.5% volume fraction V_f of steel fibers (aspect ratio 80)
- Special reinforcement details in the plastic hinge zone: longitudinal dowels to avoid base cracks and rebar debonding to reduce stress concentration and offset rebar fracture
- Relaxed transverse reinforcement
- Analytical model based on predicted FRC behavior
- Improved model calibrated according to experimental results of two 1/4- scale FRC cantilever columns tested at UC Berkeley



Figure: Details of FRC scale testing cages

Isolated Bridge Systems

- BI1: Elastic column behavior $\mu_d < 1$, $D_c = 5'$, $\rho_l = 3\%$, $\rho_t = 0.16\%$. Isolators: $B_i = 35''$, $H_i = 20''$
- BI2: Inelastic column behavior: $\mu_d < 2$, $D_c = 4.25'$, $\rho_l = 3\%$, $\rho_t = 0.16\%$. Isolators: $B_i = 31.5''$, $H_i = 15''$
- Design based on AASHTO Guide Specifications for Seismic Isolation Design, SDC 2004

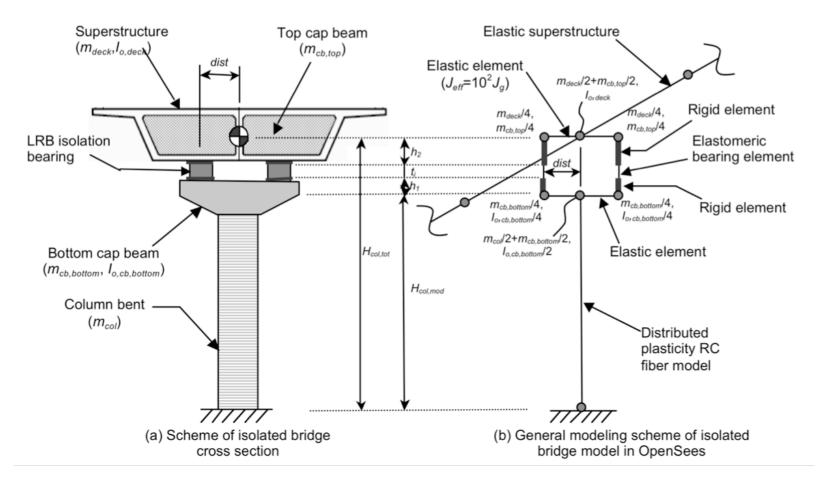
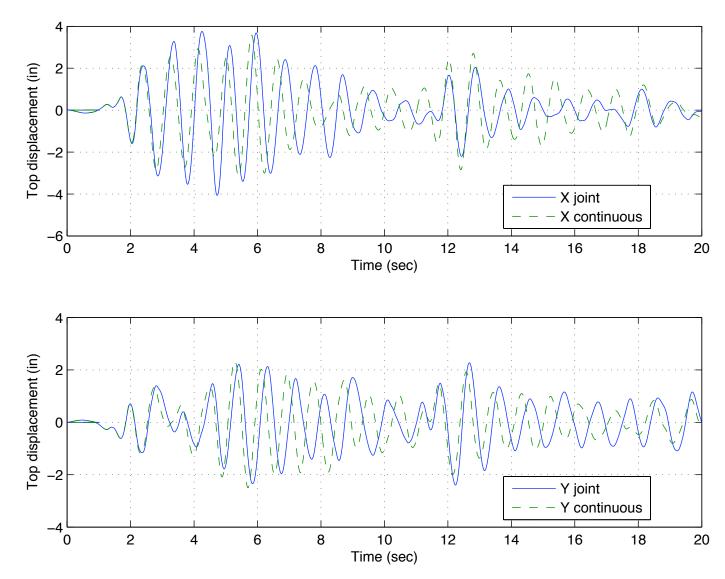


Figure: Details of RC bridge Type 1A with base isolation


Modular Construction

- Pre-cast segments (column, deck, etc.)
- Dry joints
- Post-tensioning

Modular Construction

Ory joint vs continuous column comparison

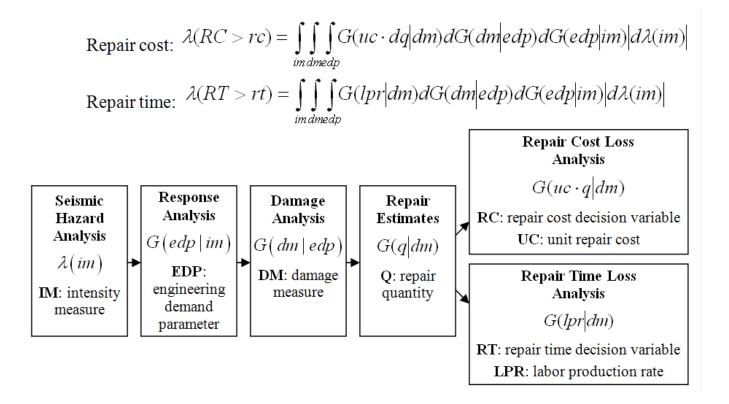
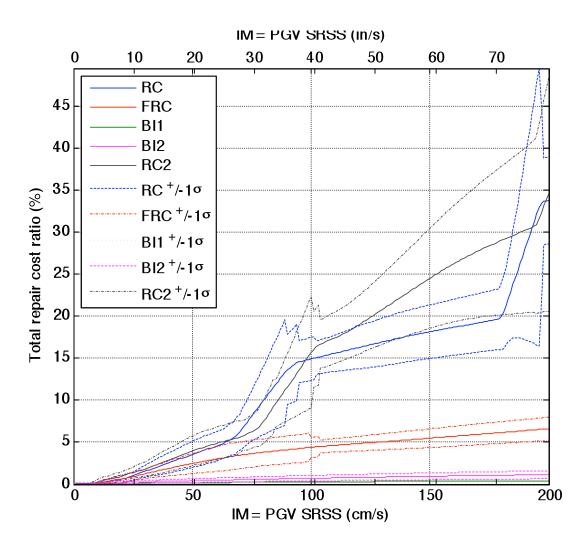

New Construction Costs

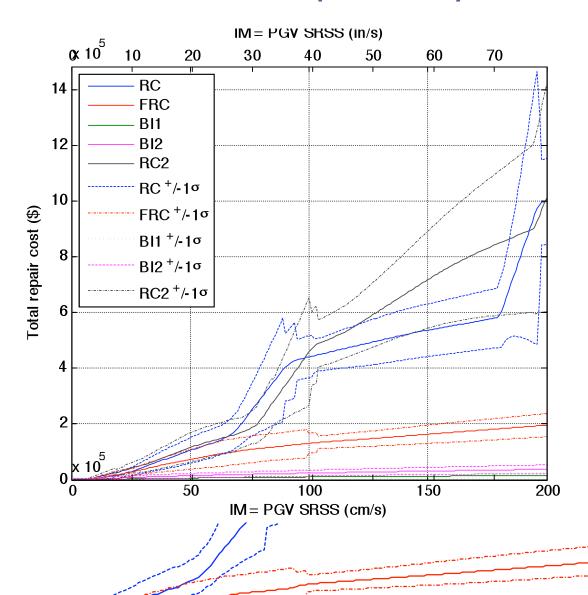
Table: New construction costs of RC, RC2, FRC, BI1, and BI2 bridges

Iterre	Total construction cost 2008Q3				
Item	RC	RC2	FRC	BI1	BI2
Structure excavation (bridge)	\$120,769	\$120,769	\$120,769	\$120,769	\$120,769
Structure backfill (bridge)	\$89,765	\$89,765	\$89,765	\$89,765	\$89,765
Furnish piling (Caltrans Ave. Fdn. Cost)	\$104,077	\$104,077	\$104,077	\$104,077	\$104,077
Drive piling (Caltrans Ave. Fdn. Cost)	\$108,243	\$108,243	\$108,243	\$108,243	\$108,243
Prestressed cast-in-place concrete	\$294,647	\$294,647	\$294,647	\$294,647	\$294,647
Structural concrete, bridge footing	\$46,677	\$46,677	\$46,677	\$46,677	\$46,677
Structural concrete, bridge	\$1,651,188	\$1,636,312	\$1,651,188	\$1,719,376	\$1,705,788
Joint seal (type B-MR 2")	\$9,919	\$9,919	\$9,919	\$9,919	\$9,919
Bar reinforcing steel	\$453,639	\$440,608	\$450,446	\$492,687	\$485,649
Concrete barrier (type 732)	\$80,517	\$80,517	\$80,517	\$80,517	\$80,517
Steel fibers	\$0	\$0	\$17,069	\$0	\$0
Lead rubber bearing isolators	\$0	\$0	\$0	\$449,056	\$264,535
Subtotal	\$2,959,441	\$2,931,534	\$2,973,316	\$3,515,733	\$3,310,586
Percent increase wrt' RC bridge (%)	0	-0.9	0.5	18.8	11.9
Superstructure cost	~\$2490k				
Foundation cost	~\$259k				
Earthworks	~\$210k				

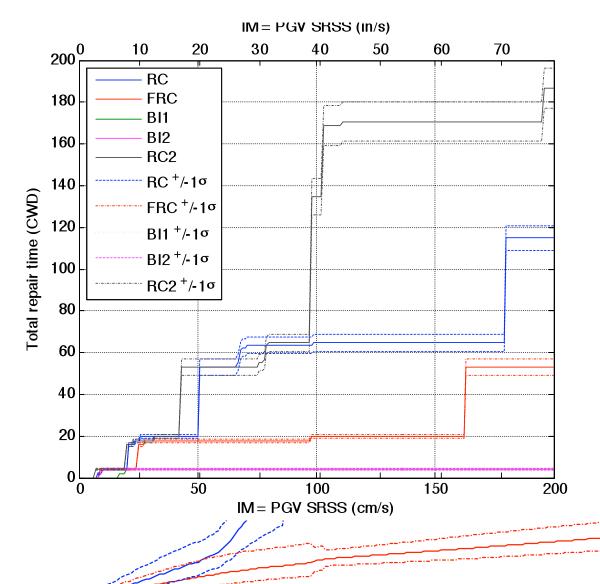
Post-Earthquake Repair Costs & Time


Figure: Schematic procedure for the LLRCAT methodology

Post-Earthquake Repair Cost Ratio


Figure: Repair cost ratio loss model for different bridge types as a function of earthquake intensity

Post-Earthquake Repair Costs


Figure: Total repair cost loss model for different bridge typesas a function of earthquake intensity

PEER

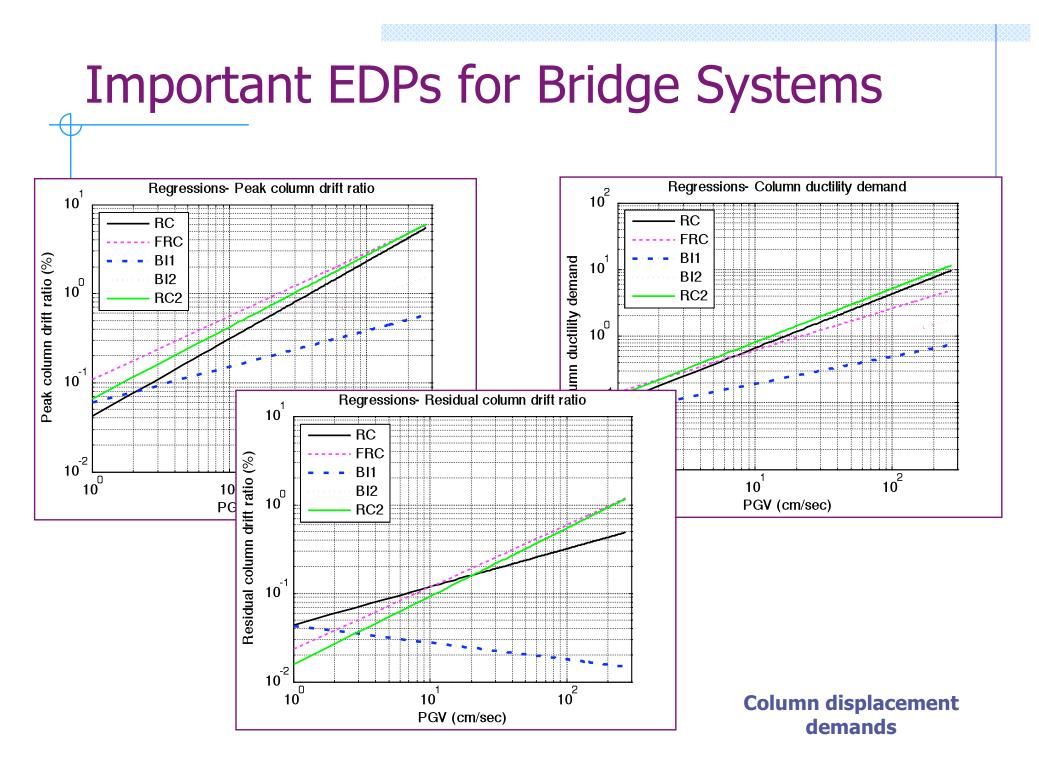
Post-Earthquake Repair Time

Figure: Total repair time (effort) loss model for different bridge types as a function of earthquake intensity

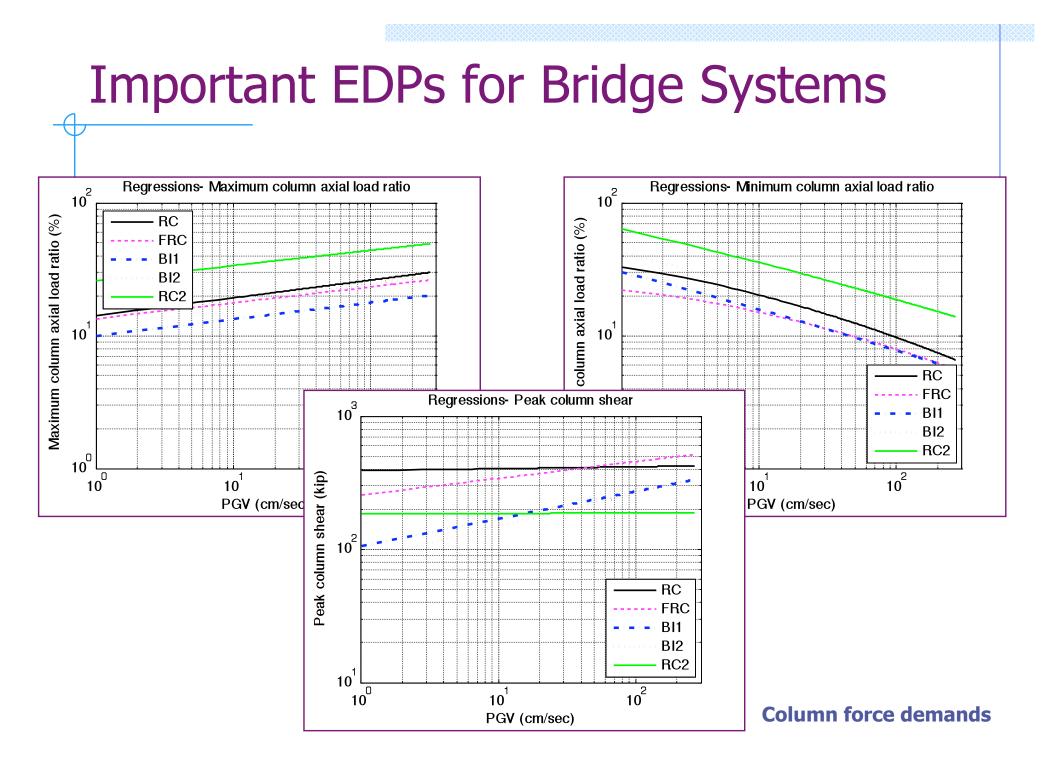
PEER

Cost-Effectiveness of Bridge Systems

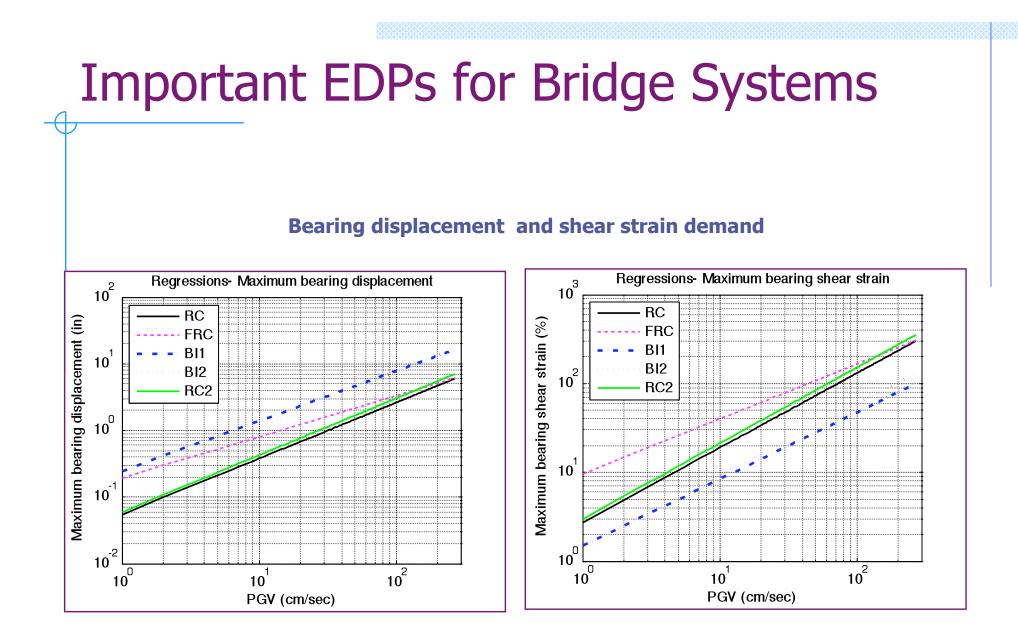
Table: Total cost of different bridge types (discount rate i=2-8%, annuity growth rate g=3%)


	Bridge type					
Cost	RC	RC2 FRC		BI1	BI2	
New construction	\$2,959,441	\$2,931,354	\$2,973,316	\$3,515,733	\$3,310,586	
Post-EQ Repair (1 yr)	\$17,154	\$24,816	\$15,739	\$989	\$4,388	
Total EQ-repair, <i>i</i> =2%, <i>g</i> =3%	\$1,850,297	\$2,676,749	\$1,697,669	\$106,677	\$473,307	
Total EQ-repair, <i>i</i> =8%, <i>g</i> =3%	\$333,276	\$482,137	\$305,785	\$19,215	\$85,252	
Total (75 years), <i>i</i> =2%, <i>g</i> =3%	\$4,809,738	\$5,608,103	\$4,670,985	\$3,622,410	\$3,783,893	
Total (75 years), <i>i</i> =8%, <i>g</i> =3%	\$3,292,717	\$3,413,491	\$3,279,101	\$3,534,948	\$3,395,838	
Δ - Difference wrt' RC, <i>i</i> =2%, <i>g</i> =3%	0%	16.6%	-2.9%	-24.7%	-21.3%	
Δ - Difference wrt' RC, <i>i</i> =8%, <i>g</i> =3%	0%	3.7%	-0.4%	7.4%	3.1%	

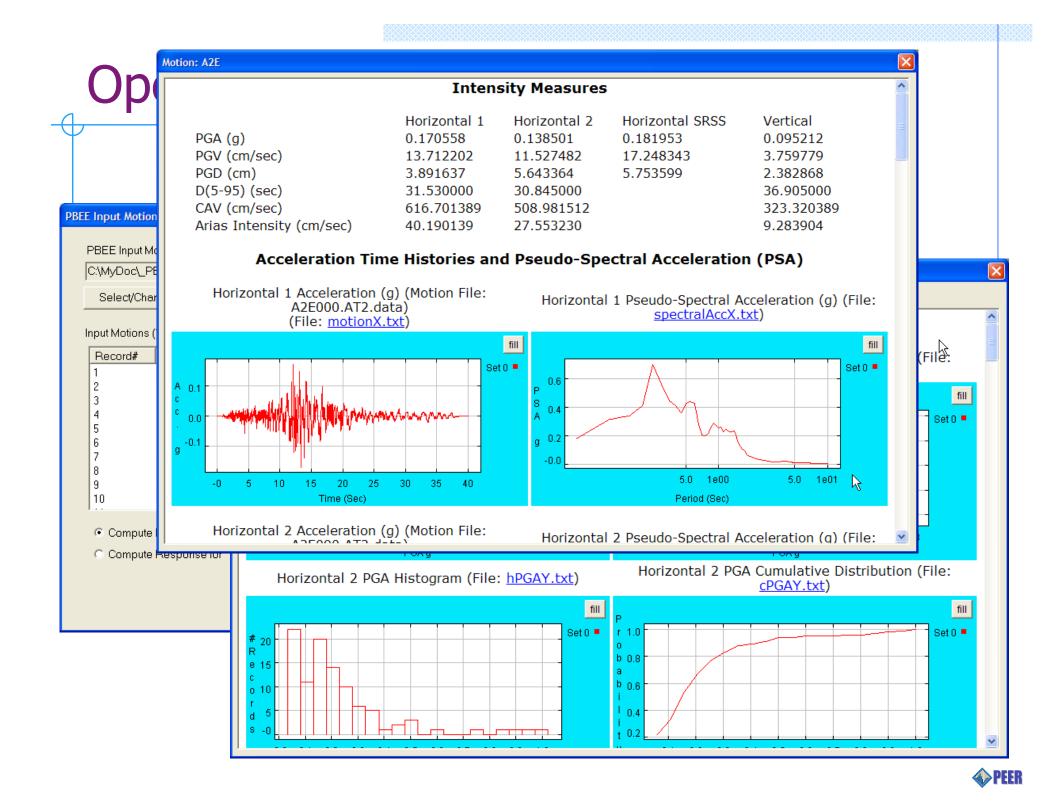
Further analysis of total cost-effectiveness and repair efforts of these bridge systems using varying time intervals, discount rates, and growth rates is pending.


Table: Repair time of different bridge types

	Bridge type				
Time	RC	RC2	FRC	BI1	BI2
Repair time (1 yr)	9	10	7	2	4
Repair time (75 yr)	46	61	19	4	4



PEER



OpenSeesPLPBEE

A graphical user interface to bridge PBEE

OpenSeesPL - NonlinColNonlinSoil.opl	
ile Meshing Execute Display View Help	
🖥 Model Input 📃 🗖 🗙	🗓 Finite Element Mesh
Analysis Type Single Analysis: Pushover Define Pattern Eigenvalue Number of Modes Base Shaking Input Motions PBEE Analysis: Ground Shaking PBEE Motions PBEE Quantities Model Definition Bridge Parameters Mesh Paremeters Mesh Paremeters Boundary Conditions B.C. Type Shear Beam F Fixed Vert Bedrock Type Rigid Bedrock F Model Inclination along Longitudinal Direction Ground Surface Inclination Angle (0-30 deg) Whole Model Inclination Angle (0-10 deg)	
	· · · · · · · · · · · · · · · · · · ·

OpenSeesPLPBEE

Graphically change bridge and soil properties

Bridge Model	7					
Column	Soil Strata					
⊙ Circular o	Soil Layer # (From Thickness		oil Type	Residual	I Shear Strength	LC
Circular Re			on type			
	1: 10	22: U-Clay2			0.2	0 0
← - (¹) D _L ←	2: 0	22: U-Clay2			0.2 📀	0 0
	3: 0			-	0.2 📀	0 0
DT	4: 0			-	0.2 📀	0 0
	5: 0			•	0.2	0 0
Pile Head	6: 0			•	0.2	0 0
C Fixed C Free/Pinn	7: 0			•	0.2 📀	0 0
Pile Head Mass	8: 0			•	0.2	0 0
	9: 0			-	0.2 📀	0 0 I
Axial Load 0	10: 0			•	0.2	0 0
Deck						
Deck Length	Saturated Soil Analysis	Water Table	Depth (Below Gro	ound Surface)	10 [m]	
Deck Width	🗖 Activate Column Zone N	Aaterial Definition	Change			
Deck Depth	🗖 Activate Column-Soil Int	Change	ige Interfacing ayer Thickness (xD) 0.1			
Deck Properties	Change					
C Activate Tension Cutoff for Cohesive Soil						
Note: P, L and C represents Parabolic, Linear increasing and Constant variation of soil modulus with depth, respectively.						
		ОК		Cance	1	

OpenSeesPLPBEE

Ð

Compute and plot demands and losses

is Response	
gi Repair Output	
Ar Column Response (Motion: A-ELC)	
Response histories ▼ of Bending Moment ▼ in Longitudinal	I direction
Response Profiles for All (File: ProfHist.txt)	
	пш
	0 • 1 • 201 • 401 • 601 • 801 • 1001 • 1201 • 1401 • 1801 • 2201 • 2401 • 2201 • 2401 • 2400 •
Moment kN-m	x10 ³

I PEER

Thank You!

- Please contact:
 - Kevin Mackie: <u>kmackie@mail.ucf.edu</u>
 - BozaStojadinovic: <u>boza@ce.berkeley.edu</u>

